Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Melaminium bis(4-hydroxybenzenesulfonate) dihydrate

Jan Janczak ${ }^{\text {a,b* }}$ and Genivaldo Julio Perpétuo ${ }^{\text {c }}$

${ }^{\text {a }}$ Departamento de Quimica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, CEP 31270-901 Belo Horizonte, MG, Brazil, ${ }^{\mathbf{b}}$ Institute of Low
Temperatures and Structures Research, Polish Academy of Sciences, PO Box 1410, 50-950 Wrocław, Poland, and ${ }^{\text {c }}$ Departamento de Fisica, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, CEP 35400-000 Ouro Preto, MG, Brazil
Correspondence e-mail: jjanek@dedalus.lcc.ufmg.br

Received 25 April 2001
Accepted 8 May 2001
The crystals of a new melaminium salt, 2,4,6-triamino-1,3,5-triazine-1,3-diium bis(4-hydroxybenzenesulfonate) dihydrate, $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{~N}_{6}{ }^{2+} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{4} \mathrm{~S}^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, are built up from doubly protonated melaminium ($2+$) residues, dissociated p-phenolsulfonate anions and water molecules. The doubly protonated melaminium dication lies on a twofold axis. The hydroxyl group of the p-hydroxybenzenesulfonate residue is roughly coplanar with the phenyl ring [dihedral angle $13(2)^{\circ}$]. A combination of ionic and donor-acceptor hydrogen-bond interactions link the melaminium and p-hydroxybenzenesulfonate residues and the water molecules to form a three-dimensional network.

Comment

This study is a continuation of our investigation into the characterization of the hydrogen bonds formed by the melamine molecule in the solid state (Janczak \& Perpétuo, 2001). To expand the understanding of the solid-state physicalorganic chemistry of compounds containing $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, we have studied the solid-state structure of the title diprotonated compound, melaminium p-hydroxybenzenesulfonate dihydrate, (I).

(I)

The crystal of (I) consists of water molecules and two well defined oppositely charged residues, namely, a moiety protonated at two of the three N atoms of the melaminium ring and dissociated p-hydroxybenzenesulfonate ions. However, the asymmetric unit consists of only half of a diprotonated melaminium residue, one p-hydroxybenzenesulfonate anion
and one water molecule (Fig. 1). To our knowledge, this is the third structurally characterized melaminium salt which is protonated at two ring N atoms; the first was the hydrochloride of a melaminium-cyanuric acid complex (Wang et al., 1990) and the second was a hydrated complex of perchlorate acid with melamine (Martin \& Pinkerton, 1995). In addition to these doubly protonated melaminium salts, singly protonated melaminium salts have also been structurally characterized (Zerkowski et al., 1994; Janczak \& Perpétuo, 2001).

The six-membered aromatic ring of the melaminium residue, $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{~N}_{6}{ }^{2+}$, is almost planar. Two of the three amino groups are approximately coplanar with the weighted leastsquares plane through the melaminium ring, while the third group (at N 4) is rotated along the $\mathrm{C} 8-\mathrm{N} 4$ bond by $13(2)^{\circ}$. This is probably due to an H1N1 $\cdot \mathrm{H} 1 \mathrm{~N} 4$ interaction of 2.30 (2) \AA, caused by the fact that C 8 is bonded to both protonated N atoms of the melaminium ring and is involved in the intermolecular hydrogen-bonding system.

The ring of the melaminium residue is significantly distorted from the ideal hexagonal form. The internal $\mathrm{C}-\mathrm{N}-\mathrm{C}$ angle at the non-protonated N atom is significantly smaller than the $\mathrm{C}-\mathrm{N}-\mathrm{C}$ angles at the protonated N atoms. These differences between the internal $\mathrm{C}-\mathrm{N}-\mathrm{C}$ angles within the melaminium ring residue correlate with the steric effect of the lone-pair electrons and are fully consistent with the valence-shell elec-tron-pair repulsion theory (VSEPR; Gillespie, 1972). Protonation of the melamine ring at two N atoms distorts the bond lengths in the aromatic ring. The two shortest bonds in the melaminium ring ($\mathrm{N} 2-\mathrm{C} 7$ and its symmetrical equivalent) are those farthest from the protonated ring N atoms. The two longest $\mathrm{N}-\mathrm{C}$ bonds of the melaminium ring ($\mathrm{N} 1-\mathrm{C} 7$ and its symmetrical equivalent) are those connected to the shortest bonds. This has the effect of opening up the ring bond angles at C7 and its symmetrical equivalent. A semi-empirical calculation performed with the $A M 1$ parameter set (Dewar et al., 1985) on the melaminium residue doubly protonated at two ring N atoms results in almost the same geometrical features. Thus, the ring distortion of the melaminium residue mainly results from the protonation and, to a lesser degree, from the hydrogen bonding and crystal packing. The distor-

Figure 1
The molecular structure of the asymmetric unit of (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme. H atoms are drawn as spheres of arbitrary radii.
tion of the aromatic melaminium ring in (I) is quite similar to that reported for the hydrochloride of the melamine-cyanuric acid complex (Wang et al., 1990), as well as for the melaminium diperchlorate monohydrate complex (Martin \& Pinkerton, 1995), i.e. both of the simple salts of diprotonated melamine that have been reported previously.

The ring of the p-hydroxybenzenesulfonate anion shows a slight quinone character. This is probably due to the substitution effect of the hydroxyl and sulfonate groups in the 1,4positions of the ring. The $\mathrm{C}-\mathrm{O}(\mathrm{OH}$ group $)$ and $\mathrm{C}-\mathrm{S}\left(\mathrm{SO}_{3}{ }^{-}\right.$ group) bond lengths are comparable with the distances of 1.364 (15) and 1.750 (8) \AA observed for $\mathrm{C}_{\text {aromatic }}-\mathrm{O}$ and $\mathrm{C}_{\text {aromatic }}-\mathrm{S}$ bonds, respectively (Allen et al., 1987). The hydroxyl group is roughly coplanar with the ring [C5-C4$\left.\mathrm{O} 4-\mathrm{H} 1 \mathrm{O} 4-13(2)^{\circ}\right]$. The sulfonate group has a slightly distorted tetrahedral geometry and is oriented so that the S1O 1 bond is almost coplanar with the phenyl ring [$\mathrm{C} 2-\mathrm{C} 1-$ S1-O1 $175.6(1)^{\circ}$. The differences between the $\mathrm{S}-\mathrm{O}$ bond lengths of the $\mathrm{SO}_{3}{ }^{-}$group are correlated with the number and strength of the hydrogen bonds formed by the O atoms. The O atom of the longest $\mathrm{S}-\mathrm{O}$ bond is involved in three hydrogen bonds as acceptor, while the other two O atoms are involved as acceptors in only one hydrogen bond. Although atoms O1 and O 2 are involved in only one hydrogen bond, the $\mathrm{S} 1-\mathrm{O} 1$ and $\mathrm{S} 1-\mathrm{O} 2$ bond lengths are different, $\mathrm{S} 1-\mathrm{O} 1$ being shorter than $\mathrm{S} 1-\mathrm{O}$ 2, since O 1 forms a weaker hydrogen bond than O2.

Both oppositely charged residues and the water molecules interact extensively by a combination of ionic and donoracceptor hydrogen-bond interactions throughout the lattice to form a three-dimensional network (Fig. 2). All eight H atoms of the melaminium residue form hydrogen bonds with four different p-hydroxybenzenesulfonate anions and with two water molecules, which are acceptors of hydrogen bonds. Two of these four p-hydroxybenzenesulfonate residues are involved as acceptors in two hydrogen bonds with a melaminium residue ($\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N} 1 \cdots \mathrm{O} 2$ and $\mathrm{N} 4-\mathrm{H} 1 \mathrm{~N} 4 \cdots \mathrm{O} 3$), while the other two p-hydroxybenzenesulfonate moieties are involved in only one hydrogen bond with the same melaminium residue. Thus, one melaminium residue forms eight hydrogen bonds. There are six $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds with four neighbouring p-hydroxybenzenesulfonate anions, and the other two H atoms of the melaminium residue form hydrogen bonds with the water molecules. The most noticeable feature is the fact that the non-protonated N atom of the melaminium residue is not involved as an acceptor in any hydrogen bond.

The $\mathrm{SO}_{3}{ }^{-}$group of the p-hydroxybenzenesulfonate residue is involved as an acceptor in three $\mathrm{O} \cdots \mathrm{H}-\mathrm{N}$ hydrogen bonds from two different melaminium moieties and in two $\mathrm{O} \cdots \mathrm{H}-$ O hydrogen bonds with two water molecules, while the hydroxyl group of the p-hydroxybenzenesulfonate ion (as a donor) forms a hydrogen bond with a water molecule. Thus, one p-hydroxybenzenesulfonate residue is involved in six different hydrogen bonds.

The water molecule is involved as a donor in two hydrogen bonds with the $\mathrm{SO}_{3}{ }^{-}$groups of two different p-hydroxy-
benzenesulfonate anions, and as an acceptor in hydrogen bonds with the phenol hydroxyl group and with the N3 amino group from a melaminium dication.

In the crystal of (I), the melaminium residues form layers which are $a / 2$ apart. In one layer, the melaminium residues are parallel to each other. The ring of the melaminium residue is perpendicular to the ac plane and forms angles of about 36 and 54° with the $b c$ and $a b$ planes, respectively. The ring of the p-hydroxybenzenesulfonate anion is almost perpendicular to the $b c$ plane and makes a dihedral angle of 60.6° with the $a b$ plane and 28.5° with the ac plane. The plane of the melaminium residue is inclined at an angle of $72.2(1)^{\circ}$ to the plane of the p-hydroxybenzenesulfonate ring. Details of the hydrogen-bonding geometry are given in Table 2.

Figure 2
The molecular arrangement in the unit cell of (I) showing the hydrogenbonding interactions (dashed lines). H atoms have been omitted for clarity.

Experimental

Melamine was dissolved in hot water and to this solution was slowly added a 10% solution of p-hydroxybenzenesulfonic acid. After several days, colourless crystals of (I) appeared.

Crystal data

$\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{~N}_{6}{ }^{2+} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{4} \mathrm{~S}^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=510.51$
Orthorhombic, Pbcn
$a=26.625$ (5) A
$b=7.863(2) \AA$
$c=10.230$ (2) A
$V=2141.7(8) \AA^{3}$
$Z=4$
$D_{x}=1.583 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.58 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} measured by flotation
Mo $K \alpha$ radiation
Cell parameters from 2155
\quad reflections
$\theta=5-26^{\circ}$
$\mu=0.32 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Parallelepiped, colourless
$0.28 \times 0.24 \times 0.16 \mathrm{~mm}$

Data collection
Kuma KM-4 diffractometer with a two-dimensional CCD areadetector
ω scans
Absorption correction: analytical, face-indexed (SHELXTL; Sheldrick, 1990)
$T_{\text {min }}=0.917, T_{\text {max }}=0.951$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.098$
$S=1.06$
2806 reflections
173 parameters
H atoms treated by a mixture of independent and constrained refinement

17563 measured reflections 2806 independent reflections 1728 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.034$
$\theta_{\text {max }}=29.6^{\circ}$
$h=-36 \rightarrow 36$
$k=-10 \rightarrow 8$
$l=-14 \rightarrow 13$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0518 P)^{2}\right. \\
& \quad+0.092 P] \\
& \quad \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.29 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.27 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: } S H E L X L 97 \\
& \quad \text { (Sheldrick, 1997) } \\
& \text { Extinction coefficient: } 0.0030(7)
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

S1-O1	$1.4439(13)$	$\mathrm{N} 1-\mathrm{C} 8$	$1.3421(17)$
$\mathrm{S} 1-\mathrm{O} 2$	$1.4566(13)$	$\mathrm{N} 1-\mathrm{C} 7$	$1.374(2)$
$\mathrm{S} 1-\mathrm{O} 3$	$1.4670(12)$	$\mathrm{N} 2-\mathrm{C} 7$	$1.3297(18)$
$\mathrm{S} 1-\mathrm{C} 1$	$1.7528(16)$	$\mathrm{N} 3-\mathrm{C} 7$	$1.307(2)$
$\mathrm{O} 4-\mathrm{C} 4$	$1.355(2)$	$\mathrm{N} 4-\mathrm{C} 8$	$1.308(3)$
O1-S1-O2	$112.78(8)$	$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 7$	$120.76(15)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 3$	$112.37(8)$	$\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 7^{\mathrm{i}}$	$115.91(18)$
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 3$	$110.00(7)$	$\mathrm{N} 3-\mathrm{C} 7-\mathrm{N} 2$	$120.15(15)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1$	$106.74(7)$	$\mathrm{N} 3-\mathrm{C} 7-\mathrm{N} 1$	$117.08(15)$
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 1$	$107.55(7)$	$\mathrm{N} 2-\mathrm{C} 7-\mathrm{N} 1$	$122.75(14)$
$\mathrm{O} 3-\mathrm{S} 1-\mathrm{C} 1$	$107.07(7)$	$\mathrm{N} 4-\mathrm{C} 8-\mathrm{N} 1$	$121.5(1)$
C5-C6-C1	$120.14(14)$	$\mathrm{N} 1^{\mathrm{i}}-\mathrm{C} 8-\mathrm{N} 1$	$117.0(2)$

Symmetry code: (i) $1-x, y, \frac{3}{2}-z$.

The positions of the H atoms of the melaminium residue and of the hydroxyl (OH) group of the p-hydroxybenzenesulfonate ion, as well as those of the water molecule, i.e. of all H atoms involved in hydrogen bonding, were refined. Other H atoms were treated as riding, with $\mathrm{C}-\mathrm{H}=0.93 \AA$. For all H atoms, $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$ and $1.5 U_{\text {eq }}(\mathrm{O})$.

Table 2
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N} 1 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.85 (2)	1.85 (2)	2.699 (2)	172 (2)
O4- $\mathrm{H} 1 \mathrm{O} 4 \cdots \mathrm{O}$	0.89 (3)	1.93 (3)	2.786 (2)	162 (2)
N3-H1N3 $\cdots \mathrm{O}^{3 i}$	0.86 (2)	2.12 (2)	2.945 (2)	162 (2)
N3-H2N3 \cdots O5 ${ }^{\text {iii }}$	0.86 (2)	2.21 (2)	2.905 (2)	138 (2)
N4-H1N4...O3 ${ }^{\text {i }}$	0.93 (2)	1.93 (2)	2.846 (2)	170 (2)
O5-H1O5 $\cdots \mathrm{O}^{\text {iii }}$	0.93 (2)	2.10 (2)	2.997 (2)	163 (2)
$\mathrm{O} 5-\mathrm{H} 2 \mathrm{O} 5 \cdots \mathrm{O}^{\text {iv }}$	0.93 (2)	2.14 (2)	2.905 (2)	138 (2)

Data collection: KM-4 CCD Software (Kuma Diffraction, 1999); cell refinement: $K M-4$ CCD Software; data reduction: $K M-4 C C D$ Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

JJ thanks the CNPq foundation for financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1522). Services for accessing these data are described at the back of the journal.

References

Allen, F. M., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Dewar, M. J. S., Zoebisch, E. G., Healy, E. F. \& Stewart, J. J. P. (1985). J. Am. Chem. Soc. 107, 3902-3909.
Gillespie, R. J. (1972). In Molecular Geometry. London: van Nostrand Reinhold.
Janczak, J. \& Perpétuo, G. J. (2001). Acta Cryst. C57, 123-125.
Kuma Diffraction (1999). KM-4 CCD Software. Version 163. Kuma Diffraction, Wrocław, Poland.
Martin, A. \& Pinkerton, A. A. (1995). Acta Cryst. C51, 2174-2177.
Sheldrick, G. M. (1990). SHELXTL. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS 97 and SHELXL97. University of Göttingen, Germany.
Wang, Y., Wei, B. \& Wang, Q. (1990). J. Crystallogr. Spectrosc. Res. 20, 79-84.
Zerkowski, J. A., McDonald, J. C. \& Whitesides, G. M. (1994). Chem. Mater. 6, 1250-1256.

